4,537 research outputs found

    Domestic Farm Policy For 2007: Forces for Change

    Get PDF
    Agricultural and Food Policy, Q18,

    When Both Transmitting and Receiving Energies Matter: An Application of Network Coding in Wireless Body Area Networks

    Get PDF
    A network coding scheme for practical implementations of wireless body area networks is presented, with the objective of providing reliability under low-energy constraints. We propose a simple network layer protocol for star networks, adapting redundancy based on both transmission and reception energies for data and control packets, as well as channel conditions. Our numerical results show that even for small networks, the amount of energy reduction achievable can range from 29% to 87%, as the receiving energy per control packet increases from equal to much larger than the transmitting energy per data packet. The achievable gains increase as a) more nodes are added to the network, and/or b) the channels seen by different sensor nodes become more asymmetric.Comment: 10 pages, 7 figures, submitted to the NC-Pro Workshop at IFIP Networking Conference 2011, and to appear in the conference proceedings, published by Springer-Verlag, in the Lecture Notes in Computer Science (LNCS) serie

    Physical Education Teachers\u27 Experiences With Remote Instruction During The Initial Phase Of The Covid-19 Pandemic

    Get PDF
    This study investigated physical education (PE) teachers\u27 experiences with remote instruction in the United States during the initial outbreak of COVID-19. PE teachers (n = 4,362) from all 50 states completed a survey identifying their experiences with remote instruction in May, 2020. Survey responses were analyzed by geographic region, district type, and school level. Teachers reported having students submit assignments (51% yes), using video instruction (37% yes), being less effective when instructing remotely (20% yes), and emphasizing student outcomes focused on health-related fitness (32% yes), and physical activity value/ enjoyment (43% yes). Access to technology (40% yes) and required student assignments (43% yes) were lowest among teachers from the South. Rural teachers reported the least access to technology (37% yes) and rated themselves as least effective (24% yes). Secondary level teachers reported the highest percentage of required assignments (84% yes). Teachers\u27 responses identify unique challenges to delivering equitable and effective remote PE instruction

    Commensurate-Incommensurate Magnetic Phase Transition in Magnetoelectric Single Crystal LiNiPO4_4

    Full text link
    Neutron scattering studies of single-crystal LiNiPO4_4 reveal a spontaneous first-order commensurate-incommensurate magnetic phase transition. Short- and long-range incommensurate phases are intermediate between the high temperature paramagnetic and the low temperature antiferromagnetic phases. The modulated structure has a predominant antiferromagnetic component, giving rise to satellite peaks in the vicinity of the fundamental antiferromagnetic Bragg reflection, and a ferromagnetic component giving rise to peaks at small momentum-transfers around the origin at (0,±Q,0)(0,\pm Q,0). The wavelength of the modulated magnetic structure varies continuously with temperature. It is argued that the incommensurate short- and long-range phases are due to spin-dimensionality crossover from a continuous to the discrete Ising state. These observations explain the anomalous first-order transition seen in the magnetoelectric effect of this system

    Elongation factor Tu's nucleotide binding is governed by a thermodynamic landscape unique among bacterial translation factors.

    No full text
    Molecular switches such as GTPases are powerful devices turning "on" or "off" biomolecular processes at the core of critical biological pathways. To develop molecular switches de novo, an intimate understanding of how they function is required. Here we investigate the thermodynamic parameters that define the nucleotide-dependent switch mechanism of elongation factor (EF) Tu as a prototypical molecular switch. EF-Tu alternates between GTP- and GDP-bound conformations during its functional cycle, representing the "on" and "off' states, respectively. We report for the first time that the activation barriers for nucleotide association are the same for both nucleotides, suggesting a guanosine nucleoside or ribose-first mechanism for nucleotide association. Additionally, molecular dynamics (MD) simulations indicate that enthalpic stabilization of GDP binding compared to GTP binding originates in the backbone hydrogen bonding network of EF-Tu. In contrast, binding of GTP to EF-Tu is entropically driven by the liberation of bound water during the GDP- to GTP-bound transition. GDP binding to the apo conformation of EF-Tu is both enthalpically and entropically favored, a feature unique among translational GTPases. This indicates that the apo conformation does not resemble the GDP-bound state. Finally, we show that antibiotics and single amino acid substitutions can be used to target specific structural elements in EF-Tu to redesign the thermodynamic landscape. These findings demonstrate how, through evolution, EF-Tu has fine-tuned the structural and dynamic features that define nucleotide binding, providing insight into how altering these properties could be exploited for protein engineering

    Fill in Fabrics: Body-Aware Self-Supervised Inpainting for Image-Based Virtual Try-On

    Full text link
    Previous virtual try-on methods usually focus on aligning a clothing item with a person, limiting their ability to exploit the complex pose, shape and skin color of the person, as well as the overall structure of the clothing, which is vital to photo-realistic virtual try-on. To address this potential weakness, we propose a fill in fabrics (FIFA) model, a self-supervised conditional generative adversarial network based framework comprised of a Fabricator and a unified virtual try-on pipeline with a Segmenter, Warper and Fuser. The Fabricator aims to reconstruct the clothing image when provided with a masked clothing as input, and learns the overall structure of the clothing by filling in fabrics. A virtual try-on pipeline is then trained by transferring the learned representations from the Fabricator to Warper in an effort to warp and refine the target clothing. We also propose to use a multi-scale structural constraint to enforce global context at multiple scales while warping the target clothing to better fit the pose and shape of the person. Extensive experiments demonstrate that our FIFA model achieves state-of-the-art results on the standard VITON dataset for virtual try-on of clothing items, and is shown to be effective at handling complex poses and retaining the texture and embroidery of the clothing

    Diffraction limited optics for single atom manipulation

    Full text link
    We present an optical system designed to capture and observe a single neutral atom in an optical dipole trap, created by focussing a laser beam using a large numerical aperture N.A.=0.5 aspheric lens. We experimentally evaluate the performance of the optical system and show that it is diffraction limited over a broad spectral range (~ 200 nm) with a large transverse field (+/- 25 microns). The optical tweezer created at the focal point of the lens is able to trap single atoms of 87Rb and to detect them individually with a large collection efficiency. We measure the oscillation frequency of the atom in the dipole trap, and use this value as an independent determination of the waist of the optical tweezer. Finally, we produce with the same lens two dipole traps separated by 2.2 microns and show that the imaging system can resolve the two atoms.Comment: 8 pages, 9 figures; typos corrected and references adde

    Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism

    Full text link
    Maternal obesity is increasing, and it is known that the intrauterine experience programs fetal and newborn metabolism. However, the relative contributions of pre- or postnatal factors are unknown. We hypothesized that maternal overnutrition caused by long-term maternal obesity would exert a stronger detrimental impact than postnatal overnutrition on offspring metabolic homeostasis, with additional postnatal overnutrition exaggerating these alterations. Female Sprague Dawley rats were exposed to chow or high-fat cafeteria diet for 5 wk before mating and throughout gestation and lactation. On postnatal d 1, litters were adjusted to three per litter to induce postnatal overnutrition (vs. 12 in control). Hypothalamic appetite regulators neuropeptide Y and proopiomelanocortin, glucose transporter 4, and lipid metabolic markers were measured. At postnatal d 20, male pups born of obese dams, or those overnourished postnatally, were 42% heavier than controls; combining both interventions led to 80% greater body weight. Maternal obesity increased pup adiposity and led to glucose intolerance in offspring; these were exaggerated by additional postnatal overnutrition during lactation. Maternal obesity was also linked to hyperlipidemia in offspring and reduced hypothalamic neuropeptide Y and increased proopiomelanocortin mRNA expression. Postnatal overnutrition of offspring from obese dams amplified these hypothalamic changes. Both maternal and postnatal overnutrition reduced muscle glucose transporter 4. Adipose carnitine palmitoyl-transferase-1 and adipose triglyceride lipase mRNA was up-regulated only by postnatal overnutrition. Maternal overnutrition appears to alter central appetite circuits and promotes early-onset obesity; postnatal overnutrition interacted to cause peripheral lipid and glucose metabolic disorders, supporting the critical message to reduce early-life adverse nutritional impact. Copyright © 2008 by The Endocrine Society

    Long-term potentiation in neurogliaform interneurons modulates excitation-inhibition balance in the temporoammonic pathway

    Get PDF
    Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse stratum lacunosum-moleculare exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex, but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of entorhinal cortex afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in stratum lacunosum-moleculare interneurons thus alters the excitation-inhibition balance at entorhinal cortex inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations. Abstract figure legend Hebbian LTP of excitatory transmission onto interneurons located within hippocampal stratum lacunosum moleculare (SLM) can be induced by electrical stimulation protocols involving pairing of pre-and post-synaptic activity. Using Ndnf-Cre mice, we show that hippocampal neurogliaform (NGF) cells express this form of LTP. These cells receive glutamatergic afferents from both the nucleus reuniens of the thalamus and the entorhinal cortex (EC), but selective optogenetic activation of either set of fibers reveals LTP at EC inputs only. Using an optogenetic theta-burst stimulation (OptoTBS) protocol to stimulate EC fibers in a physiologically relevant way, we show that NGF interneuron LTP translates to an increase in disynaptic inhibition onto CA1 pyramidal cell distal dendrites. Monosynaptic EC-CA1 pyramidal cell inputs do not undergo equivalent potentiation, leading to a net decrease in the excitation/inhibition (E/I) ratio of this pathway
    • …
    corecore